
Overview of the Global Arrays
Parallel Software Development Toolkit

Bruce Palmer
Jarek Nieplocha, Manoj Kumar Krishnan, Vinod
Tipparaju

Pacific Northwest National Laboratory

Overview

� Background
� Programming Model
� Core Capabilities
� New Functionality
� Applications
� Summary

Distributed Data vs Shared Memory

Distributed Data:
Data is explicitly associated with each processor, accessing data

requires specifying the location of the data on the processor and
the processor itself.

(0xf5670,P0)

(0xf32674,P5)

P0 P1 P2

Data locality is
explicit but data
access is complicated.
Distributed computing
is typically
implemented with
message passing
(e.g. MPI)

Distributed Data vs Shared Memory
(Cont).

Shared Memory:
Data is an a globally accessible address space, any processor can

access data by specifying its location using a global index

Data is mapped out in
a natural manner
(usually
corresponding to the
original problem) and
access is easy.
Information on data
locality is obscured
and leads to loss of
performance.

(1,1)

(150,200)

(47,95)

(106,171)

Global Arrays

single, shared data structure/
global indexing

e.g., access A(4,3) rather than
buf(7) on task 2

Physically distributed data

Distributed dense arrays that can be accessed through a
shared memory-like style

Global Address Space

Global Arrays (cont.)

� Shared memory model in context of
distributed dense arrays

� Much simpler than message-passing for
many applications

� Complete environment for parallel code
development

� Compatible with MPI
� Data locality control similar to distributed

memory/message passing model
� Extensible
� Scalable

Remote Data Access in GA
Message Passing:

identify size and location of data
blocks

loop over processors:
if (me = P_N) then

pack data in local message
buffer
send block of data to
message buffer on P0

else if (me = P0) then
receive block of data from
P_N in message buffer
unpack data from message
buffer to local buffer

endif
end loop

copy local data on P0 to local buffer

Global Arrays:

NGA_Get(g_a, lo, hi, buffer, ld);

Global Array
handle

}

Global upper
and lower
indices of data
patch

Local buffer
and array of
strides

P0

P1

P2

P3

Data Locality

What data does a processor own?

NGA_Distribution(g_a, iproc, lo, hi);

Where is the data?

NGA_Access(g_a, lo, hi, ptr, ld)

Use this information to organize calculation so that
maximum use is made of locally held data

Global Array Model of Computations

local memory

Shared Object

copy to local m
em

ory

get

compute/update

local memory

Shared Object

co
py

 to
 sh

ar
ed

 o
bj

ec
t

local memory

put

Example: Matrix Multiply

local buffers on the
processor

global arrays
representing
matrices

•

•

=

=

nga_getnga_put

dgemm

Matrix Multiply
(a better version)

local buffers on the
processor

more scalable!
(less memory,
higher parallelism)•

•

=

=

getatomic accumulate

dgemm

Example: 1-D Transpose

Example: 1-D Transpose (cont.)

#define NDIM 1
#define TOTALELEMS 197
#define MAXPROC 128

program main
implicit none

#include "mafdecls.fh"
#include "global.fh"

integer dims(3), chunk(3), nprocs, me, i, lo(3), hi(3), lo1(3)
integer hi1(3), lo2(3), hi2(3), ld(3), nelem
integer g_a, g_b, a(MAXPROC*TOTALELEMS), b(MAXPROC*TOTALELEMS)
integer heap, stack, ichk, ierr
logical status
heap = 300000
stack = 300000

Example: 1-D Transpose (cont.)
c initialize communication library

call mpi_init(ierr)
c initialize ga library

call ga_initialize()
me = ga_nodeid()
nprocs = ga_nnodes()
dims(1) = nprocs*TOTALELEMS + nprocs/2 ! Unequal data distribution
ld(1) = MAXPROC*TOTALELEMS
chunk(1) = TOTALELEMS ! Minimum amount of data on each processor
status = ma_init(MT_F_DBL, stack/nprocs, heap/nprocs)

c create a global array
status = nga_create(MT_F_INT, NDIM, dims, "array A", chunk, g_a)
status = ga_duplicate(g_a, g_b, "array B")

c initialize data in GA
do i=1, dims(1)

a(i) = i
end do
lo1(1) = 1
hi1(1) = dims(1)
if (me.eq.0) call nga_put(g_a,lo1,hi1,a,ld)
call ga_sync() ! Make sure data is distributed before continuing

Example: 1-D Transpose (cont.)

c invert data locally
call nga_distribution(g_a, me, lo, hi)
call nga_get(g_a, lo, hi, a, ld) ! Use locality
nelem = hi(1)-lo(1)+1
do i = 1, nelem
b(i) = a(nelem - i + 1)

end do

c invert data globally
lo2(1) = dims(1) - hi(1) + 1
hi2(1) = dims(1) - lo(1) + 1
call nga_put(g_b,lo2,hi2,b,ld)
call ga_sync() ! Make sure inversion is complete

Example: 1-D Transpose (cont.)

c check inversion
call nga_get(g_a,lo1,hi1,a,ld)
call nga_get(g_b,lo1,hi1,b,ld)
ichk = 0
do i= 1, dims(1)
if (a(i).ne.b(dims(1)-i+1).and.me.eq.0) then
write(6,*) "Mismatch at ",i
ichk = ichk + 1

endif
end do
if (ichk.eq.0.and.me.eq.0) write(6,*) "Transpose OK"

status = ga_destroy(g_a) ! Deallocate memory for arrays
status = ga_destroy(g_b)
call ga_terminate()
call mpi_finalize(ierr)
stop
end

One-sided Communication

message passing
MPI

P1P0
receive send

P1P0
put

one-sided communication
SHMEM, ARMCI, MPI-2-1S

Message Passing:
Message requires cooperation
on both sides. The processor
sending the message (P1) and
the processor receiving the
message (P0) must both
participate.

One-sided Communication:
Once message is initiated on
sending processor (P1) the
sending processor can
continue computation.
Receiving processor (P0) is
not involved.

Non-Blocking Communication

� New functionality in GA version 3.3
� Allows overlapping of data transfers and computations

� Technique for latency hiding

� Nonblocking operations initiate a communication call and then
return control to the application immediately

� operation completed locally by making a call to the wait routine

SUMMA Matrix Multiplication

A B C=A.B

Computation

Comm.
(Overlap)

Issue NB Get A and B blocks
dodo (until last chunk)

issue NB Get to the next blocks
wait for previous issued call
compute A*B (sequential dgemm)
NB atomic accumulate into “C”

matrix
donedone

Advantages:Advantages:
- Minimum memory
- Highly parallel
- Overlaps computation and communication

- latency hiding
- exploits data locality
- patch matrix multiplication (easy to use)
- dynamic load balancingpatch matrix multiplication

=

SUMMA Matrix Multiplication:
Improvement over MPI

Non-Blocking Communication Performance

Matrix Size 1024

0

5

10

15

20

25

30

4 8 16 32 48 64 128

Procs

%
 im

pr
ov

em
en

t o
ve

r M
PI blocking

non-blocking

Matrix Size 2048

0

5

10

15

20

25

16 32 64 128
Procs

%
 Im

pr
ov

em
en

t o
ve

r M
PI blocking

non-blocking

*2.4Ghz P4 Linux cluster, Myrinet-GM interconnect (at SUNY, Buffalo)

Structure of GA

Message Passing
Global operations

ARMCI
portable 1-sided
communication

put,get, locks, etc

distributed arrays layer
memory management, index translation

system specific interfaces
LAPI, GM/Myrinet, threads, VIA,..

Global Arrays
and MPI are
completely
interoperable.
Code can
contain calls
to both
libraries.

Fortran 77 C C++ Babel

F90

Python

JavaApplication
programming
language interface

Core Capabilities

� Distributed array library
� dense arrays 1-7 dimensions
� four data types: integer, real, double precision, double complex
� global rather than per-task view of data structures
� user control over data distribution: regular and irregular

� Collective and shared-memory style operations
� ga_sync, ga_scale, etc
� ga_put, ga_get, ga_acc
� nonblocking ga_put, ga_get, ga_acc

� Interfaces to third party parallel numerical libraries
� PeIGS, Scalapack, SUMMA, Tao

⌧ example: to solve a linear system using LU factorization
call ga_lu_solve(g_a, g_b)

instead of
call pdgetrf(n,m, locA, p, q, dA, ind, info)
call pdgetrs(trans, n, mb, locA, p, q, dA,dB,info)

Interoperability and Interfaces

� Language interfaces to Fortran, C, C++, Python
� Interoperability with MPI and MPI libararies

� e.g., PETSC, CUMULVS

� Explicit interfaces to other systems that expand
functionality of GA
�ScaLAPACK-scalable linear algebra software
�Peigs-parallel eigensolvers
�TAO-advanced optimization package

Global Array Processor Groups

Many parallel applications require the execution of a large
number of independent tasks. Examples include

• Numerical evaluation of gradients

• Monte Carlo sampling over initial conditions or uncertain
parameter sets

• Free energy perturbation calculations (chemistry)

• Nudged elastic band calculations (chemistry and materials
science)

• Sparse matrix-vector operations (NAS CG benchmark)

Global Array Processor Groups

If the individual calculations are small enough then each
processor can be used to execute one of the tasks
(embarrassingly parallel algorithms).

If the individual tasks are large enough that they must be
distributed amongst several processors then the only option
(usually) is to run each task sequentially on multiple processors.
This usually limits the total number of processors that can be
applied to the problem since parallel efficiency degrades as the
number of processors increases.
Sp

ee
du

p

Processors

Global Array Processor Groups

Alternatively the collection of processors can be decomposed
into processor groups. These processor groups can be used to
execute parallel algorithms independently of one another. This
requires

• global operations that are restricted in scope to a particular
group instead of over the entire domain of processors (world
group)

• distributed data structures that are restricted to a particular
group

Processor Groups (Schematic)

World Group

Group A Group B

Creating Processor Groups

integer function ga_pgroup_create(list, count)

Returns a handle to a group of processors. The total number
of processors is count, the individual processor IDs are located
in the array list.

subroutine ga_pgroup_set_default(p_grp)

Set the default processor to p_grp. All arrays created after this
point are created on the default processor group, all global
operations are restricted to the default processor group unless
explicit directives are used. Initial value of the default processor
group is the world group.

Explicit Operations on Groups
Explicit Global Operations on Groups

ga_pgroup_sync(p_grp)
ga_pgroup_brdcst(p_grp,type,buf,lenbuf,root)
ga_pgroup_igop(p_grp,type,buf,lenbuf,op)
ga_pgroup_dgop(p_grp,type,buf,lenbuf,op)

Query Operations on Groups

ga_pgroup_nnodes(p_grp)
ga_pgroup_nodeid(p_grp)

Access Functions

integer function ga_pgroup_get_default()
integer function ga_pgroup_get_world()

Programming with Groups

� Most explicit group operations in GA reflect operations
available for MPI groups

� Concept of default group is not available in MPI

� Higher level abstractions not available in MPI

Communication between Groups

Copy and copy_patch operations are supported for global arrays that
are created on different groups. One of the groups must be
completely contained in the other (nested).

The copy or copy_patch operation must be executed by all processors
on the nested group (group B in illustration)

Group A

Group B

Using Processor Groups

c set up groups
me = ga_nodeid()
nprocs = ga_nnodes()
grpsize = 4
ngrps = nprocs/grpsize
nproc = grpsize
do i = 1, ngrps ! All processors participate in
do j = 1, grpsize ! creation of group
proclist(j) = grpsize*(i-1) + (j-1)

end do
procgroup(i) = ga_pgroup_create(proclist,nproc)

end do
my_pgrp = (me - mod(me,grpsize))/grpsize + 1

c run task on groups
call ga_pgroup_set_default(procgroup(my_pgrp))
call do_parallel_task
call ga_pgroup_set_default(ga_pgroup_get_world())

MD Example

P0 P1 P2 P3

P4 P5 P6 P7

Spatial Decomposition Algorithm:

• Partition particles among processors

• Update coordinates at every step

• Update partitioning after fixed
number of steps

MD Parallel Scaling

1

10

100

1 10 100

Scaling of Single Parallel Task

Single Parallel Task

Perfect Scaling

Sp
ee

du
p

Number of Processors

MD Performance on Groups

0

100

200

300

400

500

600

0 100 200 300 400 500 600

Scaling of Parallel MD Tasks on Groups

256 Tasks
1024 Tasks
Perfect Scaling

Sp
ee

du
p

Number of Processors

Application Areas

thermal flow simulation
Visualization and
image analysis

electronic structure chemistry
GA is the standard programming model

glass flow
simulation

material sciences molecular dynamics
Others: financial security forecasting, astrophysics, geosciences, atmospheric chemistry

biologybioinformatics

normal global array
global array with ghost cells

Ghost Cells

Operations:

NGA_Create_ghosts - creates array with ghosts cells
GA_Update_ghosts - updates with data from adjacent processors
NGA_Access_ghosts - provides access to “local” ghost cell elements
NGA_Nbget_ghost_dir - nonblocking call to update ghosts cells

Ghost Cell Update

Automatically update ghost
cells with appropriate data
from neighboring
processors. A multiprotocol
implementation has been
used to optimize the
update operation to match
platform characteristics.

Lattice Boltzmann Simulation

)),(),((1),(),(tftftfttf eq
iiiii rrrer −−=∆++

τ

Relaxation Stream

Ghost Cell Application
Performance

100

1000

10000

1 10 100 1000

Total

Update

Number of Processors

Mirrored Arrays

� Create Global Arrays that are replicated between SMP
nodes but distributed within SMP nodes

� Aimed at fast nodes connected by relatively slow
networks (e.g. Beowulf clusters)

� Use memory to hide latency
� Most of the operations supported on ordinary Global

Arrays are also supported for mirrored arrays
� Global Array toolkit augmented by a merge operation

that adds all copies of mirrored arrays together
� Easy conversion between mirrored and distributed

arrays

Mirrored Arrays (cont.)

Distributed Mirrored Replicated

NWChem DFT Calculation

http://www.emsl.pnl.gov/docs/nwchem

Other Functionality

� Common Component Architecture
� Disk Resident Arrays

� Provide an interface between GA and distributed files on disk

� Sparse data manipulation

Related Programming Tools

� Co-Array Fortran
�Distributed Arrays
�One-Sided Communication
�No Global View of Data

� UPC
�Model Similar to GA but only applicable to C programs
�Global Shared Pointers could be used to implement GA

functionality
⌧C does not really support multi-dimensional arrays

� High level functionality in GA is missing from these
systems

Summary

� The idea has proven very successful
�efficient on a wide range of architectures

⌧core operations tuned for high performance

�library substantially extended but all original (1994) APIs
preserved

�increasing number of application areas

� Supported and portable tool that works in real
applications

� Future work
�Fault tolerance

Source Code and More
Information

� Version 3.3 available
� Version 3.4 (with groups) available in beta
� Homepage at http://www.emsl.pnl.gov/docs/global/
� Platforms (32 and 64 bit)

�IBM SP
�Cray X1, XD1
�Linux Cluster with Ethernet, Myrinet, Infiniband, or Quadrics
�Solaris
�Fujitsu
�Hitachi
�NEC
�HP
�Windows

Disk Resident Arrays
� Extend GA model to disk

�system similar to Panda (U. Illinois) but higher level
APIs

� Provide easy transfer of data between N-dim
arrays stored on disk and distributed arrays
stored in memory

� Use when
�Arrays too big to store in core
�checkpoint/restart
�out-of-core solvers

global array

disk resident array

High Bandwidth Read/Write

Disk Resident Array

Disks

Disk Resident Arrays
automatically
decomposed into
multiple files

Scalable Performance of DRA

file systems
I/O buffers

SMP node

1 2 3
8

16
32

1

2
3

0
50

100
150
200
250
300
350
400

ba
nd

w
id

th
 [M

B
/s

]

array rank

di
sk

s

Useful GA Functions (Fortran)

subroutine ga_initialize()
subroutine ga_terminate()

integer function ga_nnodes()
integer function ga_nodeid()

logical function nga_create(type,dim,dims,name,chunk,g_a)
integer type (MT_F_INT, MT_F_DBL, etc.)
integer dim
integer dims(dim)
character*(*) name
integer chunk(dim)
integer g_a

logical function ga_duplicate(g_a,g_b,name)
integer g_a
integer g_b
character*(*) name

logical function ga_destroy(g_a)
integer g_a

subroutine ga_sync()

Use GA Functions (Fortran)

subroutine nga_distribution(g_a, node_id, lo, hi)
integer g_a
integer node_id
integer lo(dim)
integer hi(dim)

subroutine nga_put(g_a, lo, hi, buf, ld)
integer g_a
integer lo(dim)
integer hi(dim)
fortran array buf
integer ld(dim-1)

subroutine nga_get(g_a, lo, hi, buf, ld)
integer g_a
integer lo(dim)
integer hi(dim)
fortran array buf
integer ld(dim-1)

Useful GA Functions (C)

void GA_Initialize()
void GA_Terminate()

int GA_Nnodes()
int GA_Nodeid()

int NGA_Create(type,dim,dims,name,chunk)
int type (C_INT, C_DBL, etc.)
int dim
int dims[dim]
char* name
int chunk[dim]
Returns GA handle g_a

int GA_Duplicate(g_a,name)
int g_a
Returns GA handle g_b
char* name

void GA_Destroy(g_a)
int g_a

void GA_Sync()

Useful GA Functions (C)

void NGA_Distribution(g_a, node_id, lo, hi)
int g_a
int node_id
int lo[dim]
int hi[dim]

void NGA_Put(g_a, lo, hi, buf, ld)
int g_a
int lo[dim]
int hi[dim]
void* buf
int ld[dim-1]

void NGA_Get(g_a, lo, hi, buf, ld)
int g_a
int lo[dim]
int hi[dim]
void* buf
int ld[dim-1]

